Designing Your Own VFD Clock II: The Functional Circuit

SLD_1400.JPG

While our last focus was on the IV-11 VFD tube - since we had to design a circuit that make the tubes glow and display the stuff we want it to, now the microcontroller is in the spotlight for adding fundamental features, such as a real time clock to the circuit.

 

The second part of the article is meant to be read in a flow since every step would require its own testing code.
At the end however, you can put it all together on breadboard or any real PCB.
And we're ready to upload the latest OpenVFD firmware to our completed circuit and enjoy how far we've come!


STEP 1: MEET THE MICROCONTROLLER

C8751.jpg

OpenVFD could've been powered by this hipster microcontroller on the left picture. What you see is an old school Intel® MCS-51 (8051)microcontroller in a nobel golden ceramic DIP package.

The choice fell on the Atmel® ATmega328P though, because Arduino® Uno shares exactly the same powerful processor. We begin by designing a fundamental circuit that makes developing on OpenVFD feel like working with the regular Uno environment. Just like reverse-engineering you first analyze the Uno schematics and take it apart. Then it's time to remove all the stuff that's not necessary for basic functionality and put it back together again with its essentials. Let's go!

 

Do you know what we will need for basic functionality? 

  • We need a supply voltage of 5V. This is done by connecting the VCC pin to 5V and GND pins to ground. Also, AVCC gets the same 5V connection
  • Like every processor, we need a clock frequency. While the AVR® has a built in, internal oscillator, we - just like the Uno - use an external one for maximum performance. The corresponding circuit is connected to pin 9 and 10 of the processor
  • Everything can be solved by a reboot. Right? Exactly, so we could also use some emergency circuitry which helps to reset the µC. That's everything connected to pin 1. Don't mind that capacitor to DTR (C10). We'll talk about that later.
 

STEP 2: COMPLETING THE UNO

led1.png

We complete the Uno compatible circuit by adding the status LEDs on serial transfer pins RxD, TxD and pin 13. One more LED indicates, that our circuit is powered on.

Like the original Uno, the serial LEDs RxD and TxD turn on when the pin is LOW. Conversely, pin 13 will turn on when the output is 5V.

 
ch340gg.png

Thinking about makes developing on the Arduino® platform super convenient I found and believe it's the simplicity of uploading code to the microcontroller using just a USB cable! Developing on OpenVFD should be as intuitive it is on an Arduino® Uno.

So we found the Chinese WCH CH340G as a reliable and easy to use communicator between the computer and OpenVFD. DTR will make OpenVFD reboot automatically when being connected to a computer.

 

STEP 3: THE REAL TIME CLOCK - DS1307 VS DS3231

What else do we need for the VFD clock? Oh right... it's the clock. So finally we're adding a circuit that provides clock functionality. Our so called RTC (real time clock) is backed up with a battery so that the clock can tick on even if OpenVFD is turned off itself. That makes sense, right? Since we wouldn't want to set the time everytime we power on. We choose between a DS1307 and a DS3231 module:

  • The DS1307 is an affordable RTC solution, simple to control but with trade-off in accuracy depending on the crystal used - which is in general pretty inaccurate due to temperature change. I had situations where the DS1307 was a minute or more off after a day. That wouldn't work in a commercial product at all
  • Luckily, the DS1307 module can easily be drop-in replaced by a DS3231 module. The DS3231 is a RTC with a TCXO (temperature compensated crystal oscillator) ensuring jaw-dropping accuracy of less than a minute error per year

After all it depends on your expectation of accuracy, which module you want to use for your VFD clock. Both are tested to be both pin and source code compatible to the OpenVFD schematics and firmware (software).

 

STEP 4: LIGHT UP THE CLOCK

 
led_bw.png
led_bw.png
 

Now let's add the most memorable characteristic of the OpenVFD clock: The LEDs that light up the tubes to create the effects and moods that we all love. It begins by finding the right RGB LED that is reliable and bright. Why RGB? Here's how beautiful colors work: We combine the three colors of RGB (red, green and blue) to get new colors. So for instance purple is just blue and red mixed together.

Meet the WS2812B digital LED. This LED acts like a shift register and is controlled by shuttling data through one single data pin. 

What makes the WS2812B really lovely is that the exact same LED is found in NeoPixel by Adafruit®. Even though the OpenVFD firmware does not rely on any Adafruit® libraries, Adafruit® still provide brilliant documentation on this LED that help when working with them. Take a look at the connection diagram. OpenVFD chained up six WS2812Bs to light up the six tubes individually.

 

STEP 5: EVERYTHING ELSE

For the time OpenVFD is not connected to a PC, four push buttons are used to set time, play with colors and do much more. The firmware OpenVFD makes them reacting to short and long presses.

A microphone module (MAX9812) makes your VFD clock dance to the tunes you enjoy. It measures sound as variations in air pressure and sends corresponding electric signals that are then evaluated by the microcontroller. Temperature measurement is done by a LM35 sensor that converts temperature into voltage levels. Our microcontroller translates this back to a temperature value that we all understand.

 

STEP 7: PUTTING IT ALL TOGETHER

pcb_top_llq.jpg

And we're done with the complete VFD clock circuit design. You can download the complete prototyping circuit diagram on the right. If you got it on breadboard or prototype board by now, we're totally ready to upload the OpenVFD firmware to your microcontroller. 

Prototyping Circuit Diagram

File Format: PNG Graphic, 223 KB

schematictube.jpg

Here's the OpenVFD Firmware in its latest version. When compiling on your own, make sure the libraries RTClibWire and digitalWriteFast are ready. These are the only dependencies of OpenVFD. In the present circuit configuration, you can also upload the firmware using myOpenVFD (the PC tool that can control OpenVFD). The only requirement is the Arduino® Uno bootloader installed on the AVR microcontroller. Otherwise, use the Firmware .HEX file to upload the latest firmware to the AVR® microcontroller directly using SPI or HV programming.

Latest OpenVFD: 6-Digit IV-11 VFD Clock Firmware C/C++ Code:

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
/*MIT License

Copyright (c) 2017 Frank F. Zheng, Date: 07/06/2017, 06:12 PM

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.*/


// --------- Includes ---------
#include <RTClib.h>              // RTC Clock Library
#include <Wire.h>                // RTC Clock Communication Library (Wire)
#include <digitalWriteFast.h>    // Clock Cycle Optimized Output
#include <EEPROM.h>              // EEPROM Access

// --------- Pin Mapping Defines ---------

//         Pin Name  | A | ATMEGA Mapping | Comment, Schematics Signal Name
// ------------------------------------------------------------------------------------------
#define    CLOCK_PIN   2    // ATMEGA:  4   74HC595 SPI Clock Pin, SCK
#define    LATCH_PIN   3    // ATMEGA:  5   74HC595 SPI Latch Pin, RCK
#define    DATA_PIN    4    // ATMEGA:  6   74HC595 SPI Data Pin, SER

#define    B_TEN_PIN   5    // ATMEGA: 11   Time Enable Button Input Pin, B_TEN
#define    B_CHY_PIN   6    // ATMEGA: 12   Color Set / Hour / Year Button Input Pin, B_CHY
#define    B_VMM_PIN   7    // ATMEGA: 13   VU Sensitivity / Minute / Month Button Input Pin, B_VMM
#define    B_MSD_PIN   8    // ATMEGA: 14   Clock Mode / Second / Day Button Input Pin, B_MSD

#define    LED_PIN    13    // ATMEGA: 19   LED Pin, LEDPIN

#define    MIC_PIN    A0    // ATMEGA: 23   Microphone Input Pin, MIN
#define    STEM_PIN   A1    // ATMEGA: 24   Temperature Sensor Input Pin, STEM

// ------------------------------------------------------------------------------------------
#define    SHORTPRESS  1    // Short press is 1
#define    LONGPRESS   2    // Long press is 2

#define    NUM_RGB     6    // 6 LEDs for OpenVFD
#define    NUM_BYTES   (NUM_RGB * 3)    // 3 * 6 = 18 bytes
#define    PORT        (PORTB)          // Digital pin's port
#define    PORT_PIN    (PORTB5)         // Digital pin's bit position
#define    NUM_BITS    (8)              // Const 8

// Used for LED crossfade phase value
#define    PI85        0.0369599135716446263348546280

#define    DS3231


// FIRMWARE VERSION STRING
// Version 2.01 final, Date: 07/06/2017, 06:12 PM
char fwString[7] = {'v', '2', '.', '0', '1', ' ', ' '};

// --------- Component Initializer --------- 

RTC_DS1307 rtc;


// --------- Global Variable Initializer --------- 
                               
uint8_t interface = 0;            // Global Display Mode
uint8_t led = 0;                  // Global LED Mode
                               
char welcomeText[6] = {'H', 'E', 'L', 'L', 'O', ' '};

uint8_t tsmCounter = 0;           // Temperature Sensor Measurement Amount Counter
uint32_t tsmValues = 0;           // Temperature sensor measurement storage
uint32_t ts;                      // Mean temperature value
uint8_t isFahrenheit = 0;         // Fahrenheit flag

uint8_t INTF0_DM = 0;             // Interface 0 dot mode counter
uint8_t INTF0_DP = 0;             // Interface 0 dot position
uint8_t INTF0_ds = 0;             // Interface 0 dot mode: second flip time delta flag
boolean INTF0_dr = false;         // Interface 0 dot mode: second flip direction

boolean dateSet = false;          // Date set flag
boolean setOnceFlag = false;      // Set once flag. Is used to prevent the clock from ticking on when entered time/date set mode

// ---- LED Control variables
uint8_t* rgb_arr = NULL;          // LED color storage array
uint8_t* target_arr = NULL;       // Smooth fade target array
uint32_t t_f;                     // LED time check

// ---- LED Preset configuration store. ATTENTION: Different ordering!
//                                 |  G|   R|   B|
//                                 ---------------

#define LED0_cOffset 11                               // # Single color presets
#define LED0_mcOffset (LED0_cOffset - 1)              // # Single color presets - 1

const uint8_t led_scPresets[][3] =  {{  0,   0,   0}, // Off! ("Off")
                                     {255, 255, 255}, // White ("On")
                                     {200, 255,  32}, // Warm White ("LON := Light On")
                                     {  0, 255,   0}, // Red ("Red")
                                     {255,   0,   0}, // Green ("GRN := Green")
                                     {  0,   0, 255}, // Blue ("Blue")
                                     {125, 255,   0}, // Yellow ("YELO = Yellow")
                                     { 30, 255,   0}, // Orange ("ORNG = Orange")
                                     {255,   0, 128}, // Cyan ("Cyan")
                                     {  0, 255, 170}, // Magenta ("PRED := Purple Red")
                                     {  0, 200, 255}  // Purple ("PRPL := Purple")
                                                    };

const uint8_t led_Presets[][NUM_BYTES] = {
                                    {  0, 200, 255,  // Rainbow colors!
                                       0,   0, 255,
                                     255,   0,   0,
                                     128, 255,   0,
                                      30, 255,   0,
                                       0, 255,   0},

                                    {128, 255, 255,  // Pastel rainbow!
                                     128,  50, 255,
                                     255,   0, 128,
                                     255, 128, 128,
                                     255, 255, 128,
                                     100, 255, 128},

                                    {255,   0,   0,  // Green to blue!
                                     240,   0,  64,
                                     216,   0, 128,
                                     128,   0, 216,
                                      64,   0, 240,
                                       0,   0, 255},
                                       
                                    {  0, 255,   3,  // Red to blue!
                                       0, 255,  10,
                                       0, 240,  25,
                                       0, 200,  80,
                                       0, 100, 150,
                                       0,  50, 255},

                                    {  3, 255,   0,  // Red to green!
                                      30, 255,   0,
                                      60, 240,   0,
                                     100, 180,   0,
                                     180, 180,   0,
                                     255,  20,   0}
                                     };

// ---- LED Resistor preset GRB     0: Off     1: Brown        2: Red       3: Orange     4: Yellow      5: Green     6: Blue      7: Purple      8: Gray       9: White
const uint8_t led_Resistor[][3] =  {{0, 0, 0}, {128, 255, 64}, {0, 255, 0}, {30, 255, 0}, {125, 255, 0}, {255, 0, 0}, {0, 0, 255}, {0, 200, 255}, {40, 40, 60}, {255, 255, 255}};

uint8_t LED0P = 0;                // LED preset mode index
// ---- LED Preset configuration set message
const char LED0PM[][4] = {         {' ', 'O', 'F', 'F'},
                                   {' ', ' ', 'O', 'N'},
                                   {' ', 'L', 'O', 'N'},
                                   {' ', 'R', 'E', 'D'},
                                   {' ', 'G', 'R', 'N'},
                                   {'B', 'L', 'U', 'E'},
                                   {'Y', 'E', 'L', 'O'},
                                   {'O', 'R', 'N', 'G'},
                                   {'C', 'Y', 'A', 'N'},
                                   {'P', 'R', 'E', 'D'},
                                   {'P', 'R', 'P', 'L'},
                                   {' ', 'R', 'N', 'B'},
                                   {'P', 'R', 'N', 'B'},
                                   {' ', 'G',   2, 'B'},
                                   {' ', 'R',   2, 'B'},
                                   {' ', 'R',   2, 'G'}};

uint8_t LED6_st = 0;              // LED regular fade position

// LED cross fade starting position
uint8_t LED7_dp = 0;              // LED cross fade position
uint8_t LED7_delta = 42;          // LED cross fade delta
// uint8_t led_CrossPosition[6] = {0, 42, 85, 127, 170, 212};

uint8_t LED8_ds = 0;              // LED chase fade second flip
uint8_t LED8_dp = 0;              // LED chase fade direction state
boolean LED8_dr = 0;              // LED chase fade direction flag
uint8_t LED8_st = 0;              // LED chase fade FSM position
uint8_t LED8_ph = 0;              // LED chase fade rainbow position
const char LED8PM[][4] = {         {' ', 'R', '-', 'L'},
                                   {' ', 'L', '-', 'R'},
                                   {'F', 'L', 'I', 'P'},
                                   {'C', 'L', 'A', 'P'}};

uint8_t LED11_pt = 0;             // LED cop mode pattern
uint8_t LED11_st = 0;             // LED cop mode FSM position
const uint8_t LED11_colors[][3] = {{  0, 255,  10},       // Cop red
                                   {  0,  15, 255}};      // Cop blue

uint8_t LED20_st = 0;             // LED microphone mode off fader state
boolean LED20_dst = false;        // LED microphone mode blink delay state
uint16_t LED20_sMin = 10;         // Sensitivity threshold value
uint8_t LED20_cp[6] = {0, 10, 20, 30, 40, 50};



// ---- Menu/Interface selector variables
long p_t[4] = {0, 0, 0, 0};    // Button press timer
const long lp_t = 500;         // Long press threshold
boolean p[4] = {false, false, false, false};    // Button enable
boolean lp[4] = {false, false, false, false};   // Long press enable
uint8_t cTEN, cCHY, cVMM, cMSD = 0;             // Check state variable


// ------------------------------------------------------------------------------------------
//              Time interval updating event class: Clocked FSM

typedef struct intervalEvent{
  unsigned long interval;
  unsigned long previousMillis;
} intervalEvent;

intervalEvent newiE(long p1){
  intervalEvent iE;
  iE.interval = p1;
  iE.previousMillis = 0;
  return iE;
}

void resetiE(intervalEvent &input){
  input.previousMillis = 0;
}

boolean updateIntervalEvent(intervalEvent &input){
  unsigned long currentMillis = millis();
  if((currentMillis - input.previousMillis) > input.interval){
    input.previousMillis = currentMillis;
    return true;
  }
  else return false;
  return false;
}

intervalEvent tsUpdater, dotUpdater, jdotUpdater, sdotUpdater, cfUpdater, chUpdater, vuUpdater, vu2Updater;

// ------------------------------------------------------------------------------------------



void setup(){
  Serial.begin(115200);
  
  // Output Pin Initializer
  pinMode(LED_PIN, OUTPUT);
  pinMode(CLOCK_PIN, OUTPUT);
  pinMode(LATCH_PIN, OUTPUT);
  pinMode(DATA_PIN, OUTPUT);

  analogReference(EXTERNAL);

  // Input Pin Initializer
  pinMode(B_TEN_PIN, INPUT);
  pinMode(B_CHY_PIN, INPUT);
  pinMode(B_VMM_PIN, INPUT);
  pinMode(B_MSD_PIN, INPUT);
  pinMode(MIC_PIN, INPUT);
  pinMode(STEM_PIN, INPUT);

  // LED initializer
  digitalWriteFast(LED_PIN, LOW);
  if((rgb_arr = (uint8_t*) malloc(NUM_BYTES))) memset(rgb_arr, 0, NUM_BYTES);  
  if((target_arr = (uint8_t*) malloc(NUM_BYTES))) memset(target_arr, 0, NUM_BYTES);
  render();
  
  // Wire, RTC Initializer
  wrInit();
  
  // Welcome message, read from EEPROM(?)
  welcome(welcomeText);
  
  // Initialize global saved values
  loadConfig();

  // Create temperature sensor updater as interval event with 15 ms update interval
  tsUpdater = newiE(8);
  dotUpdater = newiE(800);
  jdotUpdater = newiE(500);
  sdotUpdater = newiE(80);
  cfUpdater = newiE(25);
  chUpdater = newiE(60);
  vuUpdater = newiE(80);
  vu2Updater = newiE(200);
}

void loop(){
  // Button check routine
  cButtonRoutine();

  // Interface render routine
  interfaceRoutine();

  // LED render routine
  ledRoutine();

  // Serial routine
  serialRoutine();
}

// This is the main VFD Display interface loop routine
void interfaceRoutine(){
  // This is the launch interface with standard clock ticking
  if(interface == 0){
    // If intervall length exceeded, update dot position

    // BEGIN OF DOT MODE HANDLER
    if(INTF0_DM == 0){
      if(updateIntervalEvent(dotUpdater)) INTF0_DP++;
      
      if(INTF0_DP == 0) displayWrite(0, 0b00010100, 0, 0);
      else if(INTF0_DP == 1) displayWrite(0, 0, 0, 0);
      else INTF0_DP = 0;
    }
    
    else if(INTF0_DM == 1){
      if(updateIntervalEvent(jdotUpdater)) INTF0_DP++;

      if(INTF0_DP == 0) displayWrite(0, 0b00100001, 0, 0);
      else if(INTF0_DP == 1) displayWrite(0, 0b00010010, 0, 0);
      else if(INTF0_DP == 2) displayWrite(0, 0b00001100, 0, 0);
      else if(INTF0_DP == 3) displayWrite(0, 0b00010010, 0, 0);
      else INTF0_DP = 0;
    }

    else if(INTF0_DM == 2){
      // This function is damn lit. Once it detects a change in second, 
      // the decimal dot will slide over the displays.
      // Get the current time and compare it with the previous timestamp
      DateTime now = rtc.now();
      if(INTF0_ds != now.second()){
        // Time has changed -> Reset dot position, remember timestamp, change direction
        INTF0_DP = 0;
        INTF0_ds = now.second();
        INTF0_dr = !INTF0_dr;
      }

      // Next position
      if(updateIntervalEvent(sdotUpdater)) INTF0_DP++;
      
      // From right to left
      if(INTF0_dr){
        if(INTF0_DP < 5) displayWrite(0, (1 << INTF0_DP), 0, 0);
        else displayWrite(0, 0b00100000, 0, 0);
      }
      
      // From left to right
      else{
        if(INTF0_DP < 5) displayWrite(0, (0b00100000 >> INTF0_DP), 0, 0);
        else displayWrite(0, 0b00000001, 0, 0);
      }
    }
    
    else if(INTF0_DM == 3) displayWrite(0, 0, 0, 0);
    else INTF0_DM = 0;
    
    // BEGIN OF BUTTON HANDLER
    // Short press on TEN will change interface to date display
    if(cTEN == SHORTPRESS) switchInterface(1);  // Enter date interface
    if(cTEN == LONGPRESS){
      // Enter time set interface
      char message[6] = {'T', ' ', 'S', 'E', 'T', ' '};
      displayWrite(3, 0x00, 1000, message);
      dateSet = false;
      switchInterface(128);
    }

    if(cMSD == SHORTPRESS){
      clearInterface();
      INTF0_DM++;
    }
    // Long press will save all settings.
    if(cMSD == LONGPRESS){  
      clearInterface();
      saveConfig();
    }
  }

  // This is the date display
  else if(interface == 1){
    displayWrite(1, 0b00010100, 0, 0);

    // Short press on TEN will change interface to temperature display
    if(cTEN == SHORTPRESS) switchInterface(2);
    if(cTEN == LONGPRESS){
      // Enter date set interface
      char message[6] = {'D', ' ', 'S', 'E', 'T', ' '};
      displayWrite(3, 0x00, 1000, message);
      dateSet = true;
      switchInterface(128);
    }
  }

  // This is the temperature sensor interface
  else if(interface == 2){
    // Create temperature reading collector
    // Check for value update
    if(updateIntervalEvent(tsUpdater)){
      // If there's no mean yet
      if(ts == 0){
        char k[6] = {'L', 'O', 'A', 'D', 'I', 'N'};
        displayWrite(3, 0b00000000, 0, k);
      }
      // Add every STEM read value
      tsmValues += analogRead(STEM_PIN);
      tsmCounter++;
      // On 250 values, get mean of values by calling t_avg(int input)
      if(tsmCounter == 250) ts = t_avg();
    }
    if(ts != 0) displayWrite(2 + (isFahrenheit << 1), 0b00010000, 0, 0);

    // Short press on TEN will change interface to standard clock display
    if(cTEN == SHORTPRESS) switchInterface(0);

    // Remove comment and block comment on interface 69/70 to enable. This is the hidden sensor debug menu! :p
    // if(cVMM == LONGPRESS) switchInterface(69);

    if(cMSD == SHORTPRESS){
      clearInterface();
      if(isFahrenheit) isFahrenheit = 0;
      else isFahrenheit = 1;
    }
  }

  // Remove comment block to enable sensor debug interface
  /*
  // Temperature sensor debug interface. cTEN: max value, cCHY: min value
  else if(interface == 69){
    static boolean vMax;
    static boolean vMin;
    static uint16_t readMax = 0;
    static uint16_t readMin = 1023;
    
    uint16_t tsRead = analogRead(STEM_PIN);

    if(tsRead > readMax) readMax = tsRead;
    else if(tsRead < readMin) readMin = tsRead;
    
    char tsDisplay[6];
    tsDisplay[0] = ' ';
    if(vMax){
      tsRead = readMax;
      tsDisplay[0] = 'P';
    }
    if(vMin){
      tsRead = readMin;
      tsDisplay[0] = '-';
    }
    
    tsDisplay[1] = ' ';
    tsDisplay[2] = tsRead / 1000;
    tsDisplay[3] = (tsRead % 1000) / 100;
    tsDisplay[4] = (tsRead % 100) / 10;
    tsDisplay[5] = tsRead % 10;
    displayWrite(3, 0x00, 20, tsDisplay);

    if(cTEN == LONGPRESS){
      vMax = !vMax;
      vMin = false;
      clearInterface();
    }
    if(cCHY == LONGPRESS){
      vMin = !vMin;
      vMax = false;
      clearInterface();
    }
    if(cVMM == LONGPRESS) switchInterface(70);
  }

  // Microphone debug interface. cTEN: max value, cCHY: min value
  else if(interface == 70){
    static boolean vMax;
    static boolean vMin;
    static uint16_t readMax = 0;
    static uint16_t readMin = 1023;
    
    uint16_t micRead = analogRead(MIC_PIN);

    if(micRead > readMax) readMax = micRead;
    else if(micRead < readMin) readMin = micRead;
    
    char micDisplay[6];
    micDisplay[0] = ' ';
    if(vMax){
      micRead = readMax;
      micDisplay[0] = 'P';
    }
    if(vMin){
      micRead = readMin;
      micDisplay[0] = '-';
    }
    
    micDisplay[1] = ' ';
    micDisplay[2] = micRead / 1000;
    micDisplay[3] = (micRead % 1000) / 100;
    micDisplay[4] = (micRead % 100) / 10;
    micDisplay[5] = micRead % 10;
    
    displayWrite(3, 0x00, 20, micDisplay);

    if(cTEN == LONGPRESS){
      vMax = !vMax;
      vMin = false;
      clearInterface();
    }
    if(cCHY == LONGPRESS){
      vMin = !vMin;
      vMax = false;
      clearInterface();
    }
    if(cVMM == LONGPRESS) switchInterface(2);
    
  }
  */

  // 128: Time/Date set menu!
  else if(interface == 128){
    // Blink active set in time interval of 800 ms
    // Switch between displayWrite(0) and displayWrite(3) for individual inactive segments
    // Use intervalEvent jdotUpdater which has the same attributes
    static boolean offActive = false;
    static uint8_t blinkDisplay = 0;
    static uint8_t tmpHour, tmpMinute, tmpSecond, tmpDay, tmpMonth, tmpYear = 0;
    
    DateTime now = rtc.now();
    if(setOnceFlag == false){
        tmpHour = now.hour();
        tmpMinute = now.minute();
        tmpSecond = now.second();
        tmpDay = now.day();
        tmpMonth = now.month();
        tmpYear = now.year() % 100;
        setOnceFlag = true;
    }
    
    if(updateIntervalEvent(jdotUpdater)) offActive = !offActive; // Flip boolean
    
    char tRenderArray[6] = {0, 0, 0, 0, 0, 0};
    if(!dateSet){ // If time set
      tRenderArray[5] = tmpSecond % 10;
      tRenderArray[4] = tmpSecond / 10;
      tRenderArray[3] = tmpMinute % 10;
      tRenderArray[2] = tmpMinute / 10;
      tRenderArray[1] = tmpHour % 10;
      tRenderArray[0] = tmpHour / 10;
    }
    else{ // If date set
      tRenderArray[5] = tmpYear % 10;
      tRenderArray[4] = (tmpYear % 100) / 10;
      tRenderArray[3] = tmpMonth % 10;
      tRenderArray[2] = tmpMonth / 10;
      tRenderArray[1] = tmpDay % 10;
      tRenderArray[0] = tmpDay / 10; 
    }
    
    if(offActive){
      // Blink corresponding display parameter
      if(blinkDisplay == 0){
        tRenderArray[0] = ' ';
        tRenderArray[1] = ' ';
      }
      else if(blinkDisplay == 1){
        tRenderArray[2] = ' ';
        tRenderArray[3] = ' ';
      }
      else if(blinkDisplay == 2){
        tRenderArray[4] = ' ';
        tRenderArray[5] = ' ';
      }
    }
    
    displayWrite(3, 0x00, 0, tRenderArray);
    
    // Short press on TEN will leave time set mode and enter time interface again
    if(cTEN == SHORTPRESS){
      if(!dateSet) switchInterface(0);
      else switchInterface(1);
    }
    
    // Short press on CHY changes the active parameter (h/m/s)
    if(cCHY == SHORTPRESS){
      clearInterface();
      blinkDisplay++;
      if(blinkDisplay == 3) blinkDisplay = 0;
    }
    
    if(cVMM == SHORTPRESS){
      clearInterface();
      // parameter--
      if(blinkDisplay == 0){ // Set hour or day
        if(!dateSet){ // Set hour
          if (tmpHour > 0) tmpHour--;
          else if (tmpHour == 0) tmpHour = 23;
        }
        else{ // Set day
          int dMax = 31;  
          if (tmpMonth == 2) dMax = 29;
          else if (tmpMonth == 4) dMax = 30;
          else if (tmpMonth == 6) dMax = 30;
          else if (tmpMonth == 9) dMax = 30;
          else if (tmpMonth == 11) dMax = 30;
          if (tmpDay > 1) tmpDay--;
          else if (tmpDay == 1) tmpDay = dMax;
        }
      }
      else if(blinkDisplay == 1){
        if(!dateSet){
          if (tmpMinute > 0) tmpMinute--;
          else if (tmpMinute == 0) tmpMinute = 59;
        }
        else{
          if (tmpMonth > 1) tmpMonth--;
          else if (tmpMonth == 1) tmpMonth = 12;
        }
      }
      else if(blinkDisplay == 2){
        if(!dateSet){
          if (tmpSecond > 0) tmpSecond--;
          else if (tmpSecond == 0) tmpSecond = 59;
        }
        else{
          if (tmpYear > 0) tmpYear--;
          else if (tmpYear == 0) tmpYear = 30;
        }
      }
    }
    
    if(cMSD == SHORTPRESS){
      clearInterface();
      // parameter++
      if(blinkDisplay == 0){ // Set hour or day
        if(!dateSet){ // Set hour
          if (tmpHour < 23) tmpHour++;
          else if (tmpHour == 23) tmpHour = 0;
        }
        else{ // Set day
          int dMax = 31;  
          if (tmpMonth == 2) dMax = 29;
          else if (tmpMonth == 4) dMax = 30;
          else if (tmpMonth == 6) dMax = 30;
          else if (tmpMonth == 9) dMax = 30;
          else if (tmpMonth == 11) dMax = 30;
          if (tmpDay < dMax) tmpDay++;
          else if (tmpDay == dMax) tmpDay = 1;
        }
      }
      else if(blinkDisplay == 1){
        if(!dateSet){
          if (tmpMinute < 59) tmpMinute++;
          else if (tmpMinute == 59) tmpMinute = 0;
        }
        else{
          if (tmpMonth < 12) tmpMonth++;
          else if (tmpMonth == 12) tmpMonth = 1;
        }
      }
      else if(blinkDisplay == 2){
        if(!dateSet){
          if (tmpSecond < 59) tmpSecond++;
          else if (tmpSecond == 59) tmpSecond = 0;
        }
        else{
          if (tmpYear < 30) tmpYear++;
          else if (tmpYear == 30) tmpYear = 0;
        }
      }
    }
    
    // Transfer to RTC
    Wire.beginTransmission(0x68);
    Wire.write(byte(0));
    Wire.write(decToBcd(tmpSecond));
    Wire.write(decToBcd(tmpMinute));
    Wire.write(decToBcd(tmpHour));
    Wire.write(0x06);
    Wire.write(decToBcd(tmpDay));
    Wire.write(decToBcd(tmpMonth));
    Wire.write(decToBcd(tmpYear));
    Wire.write(byte(0));
    Wire.endTransmission();  
    
    setOnceFlag = false;  // Reset static flag
  }
}

// Button check routine
void cButtonRoutine(){
  cTEN = checkOption(B_TEN_PIN);  // Short press: main interface switch
  cCHY = checkOption(B_CHY_PIN);  // Short press: color switch
  cVMM = checkOption(B_VMM_PIN);
  cMSD = checkOption(B_MSD_PIN);  // Short press: display mode switch
}

// This is the LED loop routine
void ledRoutine(){

  // LED 0: Color preset
  if(led == 0){

    // If not single Color
    if(LED0P > LED0_mcOffset){
      for(uint8_t i = 0; i < NUM_BYTES; i++) target_arr[i] = led_Presets[LED0P - LED0_cOffset][i];
      ledSmoothWrite();
    }
    else{ // Save some RAM
      for(uint8_t offset = 0; offset < NUM_BYTES; offset += 3){
        target_arr[offset] = led_scPresets[LED0P][0];
        target_arr[offset + 1] = led_scPresets[LED0P][1];
        target_arr[offset + 2] = led_scPresets[LED0P][2];
      }
      ledSmoothWrite();
    }

    if(cCHY == SHORTPRESS){
      led = 6;                    // Switch to regular fade
      char k[6] = {'C', ' ', 'F', 'A', 'D', 'E'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }

    if(cVMM == SHORTPRESS){
      LED0P++;
      if(LED0P == 16) LED0P = 0;

      // Dynamic memory saving
      char LED0PMC[6];
      LED0PMC[0] = 'C';
      LED0PMC[1] = ' ';
      for(uint8_t i = 2; i < NUM_RGB; i++) LED0PMC[i] = LED0PM[LED0P][i - 2];
      
      displayWrite(3, 0x00, 500, LED0PMC);    // Write change message
      clearInterface();
    }
  }

  // LED 2: Serial accessible color mode
  else if(led == 2){
    // ledDirectWrite(scustom_arr);

    if(cCHY == SHORTPRESS){
      led = 6;                    // Switch to regular fade
      char k[6] = {'C', ' ', 'F', 'A', 'D', 'E'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }
  }

  // LED 3: Serial smooth write color mode
  else if(led == 3){
    ledSmoothWrite();

    if(cCHY == SHORTPRESS){
      led = 6;                    // Switch to regular fade
      char k[6] = {'C', ' ', 'F', 'A', 'D', 'E'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }
  }

  // LED 6: Regular fade
  else if(led == 6){
    if(updateIntervalEvent(chUpdater)) LED6_st++;

    uint32_t phase = ledPhase(LED6_st);
    
    for(uint8_t offset = 0; offset < NUM_BYTES; offset += 3){
      target_arr[offset] = (uint8_t)((phase >> 16) & 0xFF);     // G
      target_arr[offset + 1] = (uint8_t)((phase >> 8) & 0xFF);  // R
      target_arr[offset + 2] = (uint8_t)(phase & 0xFF);         // B
    }

    ledSmoothWrite();

    if(cCHY == SHORTPRESS){
      led = 7;                    // Switch to cross fade
      char k[6] = {'C', ' ', 'C', 'R', 'F', 'D'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }
  }

  // LED 7: Cross fade!
  else if(led == 7){
    if(updateIntervalEvent(cfUpdater)) LED7_dp++; // Just let it overflow and begin from 0 :p
    uint8_t offset = 0;
      
    // Cycle position
    for(uint8_t i = 0; i < NUM_RGB; i++){
      uint32_t phase = ledPhase(LED7_dp + (i * LED7_delta));
      rgb_arr[offset] = (uint8_t)((phase >> 16) & 0xFF);     // G
      rgb_arr[offset + 1] = (uint8_t)((phase >> 8) & 0xFF);  // R
      rgb_arr[offset + 2] = (uint8_t)(phase & 0xFF);         // B
        offset += 3;
    }
    render();
    

    if(cCHY == SHORTPRESS){
      led = 8;                    // To chase fade (LED 8)
      char k[6] = {'C', ' ', 'C', 'H', 'F', 'D'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }

    if(cVMM == SHORTPRESS){
      char k[6] = {'D', 'E', 'L', ' ', ' ', ' '};

      // Higher delta: wider rainbow
      if(LED7_delta == 42) LED7_delta = 10;
      else if(LED7_delta == 10) LED7_delta = 21;
      else if(LED7_delta == 21) LED7_delta = 42;

      // Get the two digits of the delta
      k[4] = LED7_delta / 10;
      k[5] = LED7_delta % 10;

      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }
  }

  // LED 8: Chase fade!
  else if(led == 8){
    if(LED8_dp < 3){                                         // If reactive to second flip
      DateTime now = rtc.now();                              // Get time
      if(LED8_ds != now.second()){                           // If the second has changed
        if(LED8_dp == 2) LED8_dr = !LED8_dr;                 // Change chase fade direction
        LED8_st = 0;                                         // Reset state machine
        LED8_ds = now.second();                              // Overwrite old second with new second
        LED8_ph += 22;                                       // Let it overflow and get different values.
      }
    }
    else{                                                    // If reactive to sound
      if(getMicData(40) > 196){                              // If the intensity of the audio samples are higher than 196 - threshold
        if(updateIntervalEvent(vu2Updater)){                 // And some time has elapsed
          LED8_dr = !LED8_dr;                                // Flip direction
          LED8_st = 0;                                       // Reset state machine
          LED8_ph += 29;                                     // And get some different color values!
        }
      }
    }

    if(LED8_st < 6){                                         // Only run this code fragment if state is in range (< 6)
      uint32_t phase = ledPhase(LED8_ph);                    // Get new phase
      uint8_t offset = 0;
      if(!LED8_dr) offset = LED8_st * 3;                     // Get manipulating position
      else offset = NUM_BYTES - ((LED8_st * 3) + 3);         // If direction backward, then backward!
      rgb_arr[offset] = (uint8_t)((phase >> 16) & 0xFF);     // Manipulate G
      rgb_arr[offset + 1] = (uint8_t)((phase >> 8) & 0xFF);  // Manipulate R
      rgb_arr[offset + 2] = (uint8_t)(phase & 0xFF);         // Manipulate B
    }
    render();

    if(updateIntervalEvent(chUpdater)) LED8_st++;
    
    if(cCHY == SHORTPRESS){
      led = 10;                    // To resistor mode (LED 10)
      char k[6] = {'C', 'R', 'C', 'O', 'D', 'E'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }

    if(cVMM == SHORTPRESS){       // Short press results change in direction
      // LED8_dp = 0: From right to left (default)
      // LED8_dp = 1: From left to right
      // LED8_dp = 2: Direction flip
      // LED8_dp = 3: Flip on clap or any significant change in microphone input value
      LED8_dp++;
      if(LED8_dp == 0) LED8_dr = false;
      else if(LED8_dp == 1) LED8_dr = true;
      else if(LED8_dp == 2) LED8_dr = !INTF0_dr;
      else if(LED8_dp == 4) LED8_dp = 0;
      char LED8PMC[6];
      for(uint8_t i = 0; i < 2; i++) LED8PMC[i] = ' ';
      for(uint8_t i = 2; i < NUM_RGB; i++) LED8PMC[i] = LED8PM[LED8_dp][i - 2];
      displayWrite(3, 0x00, 1000, LED8PMC);
      clearInterface();
    }
  }

  // LED 10: Resisor color code!
  else if(led == 10){
    uint8_t clockData[NUM_RGB];

    // Get the time once again
    DateTime now = rtc.now();
    clockData[0] = now.second() % 10;
    clockData[1] = now.second() / 10;
    clockData[2] = now.minute() % 10;
    clockData[3] = now.minute() / 10;
    clockData[4] = now.hour() % 10;
    clockData[5] = now.hour() / 10;
    
    uint8_t offset = 0;
    for(uint8_t i = 0; i < 6; i++){
      target_arr[offset] = led_Resistor[clockData[i]][0];        // G
      target_arr[offset + 1] = led_Resistor[clockData[i]][1];    // R
      target_arr[offset + 2] = led_Resistor[clockData[i]][2];    // B
      offset += 3;
    }

    ledSmoothWrite();
    
    if(cCHY == SHORTPRESS){
      led = 11;                    // Switch to police light mode!
      char k[6] = {'C', ' ', ' ', 'C', 'O', 'P'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }
  }

  // LED 11: Cop lights!
  else if(led == 11){
    // cfUpdater has update time of 25 ms (ideal for cop mode)
    if(updateIntervalEvent(cfUpdater)){
      if(LED11_st < 13) LED11_st++;
      else if(LED11_st == 13) LED11_st = 0;
    }

    if(LED11_pt == 0){
      if(LED11_st == 0) copHalfRender(0, 1);                      // b | r fill
      
      else if(LED11_st == 5){
        for(uint8_t i = 0; i < NUM_BYTES; i += 3) for(uint8_t j = 0; j < 3; j++) rgb_arr[i + j] = led_scPresets[0][j];
        render();                                                 // off fill
      }
      
      else if(LED11_st == 6) copHalfRender(0, 1);                 // b | r fill
      else if(LED11_st == 7) copHalfRender(1, 0);                 // r | b fill
      
      else if(LED11_st == 12){
        for(uint8_t i = 0; i < NUM_BYTES; i += 3) for(uint8_t j = 0; j < 3; j++) rgb_arr[i + j] = led_scPresets[1][j];
        render();                                                 // white fill
      }     
      
      else if(LED11_st == 13) copHalfRender(1, 0);                // r | b fill
    }

    if(cCHY == SHORTPRESS){
      led = 20;                    // Switch to microphone mode!
      char k[6] = {'C', 'S', 'O', 'U', 'N', 'D'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }
  }

  // LED 20: Microphone mode!
  else if(led == 20){
    // If time interval passed, decrease turned on LEDs by one (regular state update)
    if(updateIntervalEvent(vuUpdater)) if(LED20_st < 7) LED20_st++;
    
    // Cross fade LED color position update
    if(updateIntervalEvent(cfUpdater)) for(uint8_t i = 0; i < NUM_RGB; i++) LED20_cp[i]++;    

    // Read microphone information, convert value to updateable state
    // Get mic data (log), divide by 36
    uint8_t rLevel = 6 - (uint8_t)(round(((double)getMicData(LED20_sMin)) / 42.5));
    // Write the less valued LEDs only when the sound is actively changed

    if(LED20_st >= rLevel){
      LED20_st = rLevel;                                        // If the new state is lower than the previous state: Overwrite current state with new rLevel (interrupt state)
      LED20_dst = false;                                        // Delay state = 0 (reset)
    }                   
    else{
      if(updateIntervalEvent(vu2Updater)) LED20_dst = true;     // If the time has elapsed, write empty
    }

    if(LED20_st < 7){                                           // If new information
      uint8_t offset = 0;
      
      for(uint8_t i = 0; i < (6 - LED20_st); i++){
        uint32_t phase = ledPhase(LED20_cp[i]);
        rgb_arr[offset] = (uint8_t)((phase >> 16) & 0xFF);      // G
        rgb_arr[offset + 1] = (uint8_t)((phase >> 8) & 0xFF);   // R
        rgb_arr[offset + 2] = (uint8_t)(phase & 0xFF);          // B
        offset += 3;
      }

      // And set all the others zero
      for(uint8_t lOffset = offset; lOffset < NUM_BYTES; lOffset++) rgb_arr[lOffset] = 0;

      // Black out the inactives
      if(LED20_dst){
        if(LED20_st < 6){
          uint8_t tOffset = 0;                                  // Temporary offset variable
          for(uint8_t i = 0; i < (5 - LED20_st); i++){
            rgb_arr[tOffset] = 0;
            rgb_arr[tOffset + 1] = 0;
            rgb_arr[tOffset + 2] = 0;
            tOffset += 3;
          }
        }
      }
      
      render();
    }

    if(cCHY == SHORTPRESS){
      led = 0;                    // Back to LED 0
      char k[6] = {' ', 'C', 'O', 'L', 'O', 'R'};
      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }

    if(cVMM == SHORTPRESS){
      char k[6] = {'S', 'E', 'N', ' ', ' ', ' '};

      // Set different sensitivity values
      if(LED20_sMin == 5) LED20_sMin = 10;
      else if(LED20_sMin == 10) LED20_sMin = 20; 
      else if(LED20_sMin == 20) LED20_sMin = 30; 
      else if(LED20_sMin == 30) LED20_sMin = 40; 
      else if(LED20_sMin == 40) LED20_sMin = 5; 

      // Get the two digits of the sensitivity number
      k[4] = LED20_sMin / 10;
      k[5] = LED20_sMin % 10;

      displayWrite(3, 0x00, 1000, k);
      clearInterface();
    }
  }
}

// This routine is to check for incoming serial data
void serialRoutine(){
  // This condition makes the beginning of everything serial.
  int sRead = Serial.available();
  
  if(sRead > 0){
    // If the communication pattern of 16 bytes is detected, write a message
    // Serial.print(sRead);
    
    uint8_t* inputBuffer;
    if((inputBuffer = (uint8_t*)malloc(24))) memset(inputBuffer, 0, 24);  
    Serial.readBytes(inputBuffer, 24);

    // If aligned protocol is detected
    if((inputBuffer[0] == 0x23) && (inputBuffer[23] == 0x24)){
      uint8_t cmdByte = inputBuffer[1];

      // If LED set is detected
      if(cmdByte == 0x01){
        // Set LED mode to 2 (Serial custom mode)
        led = 2;
        // And write LED information to target
        for(uint8_t i = 2; i < 20; i++) rgb_arr[i - 2] = inputBuffer[i];
        render();
      }

      // If LED smooth set is detected
      else if(cmdByte == 0x02){
        // Set LED mode to 3 (Serial smooth write)
        led = 3;
        // And write LED information to target
        for(uint8_t i = 2; i < 20; i++) target_arr[i - 2] = inputBuffer[i];
      }

      // If time set command is detected
      else if(cmdByte == 0x10){  
        // Transfer to RTC
        Wire.beginTransmission(0x68);
        Wire.write(byte(0));
        Wire.write(decToBcd(inputBuffer[2]));
        Wire.write(decToBcd(inputBuffer[3]));
        Wire.write(decToBcd(inputBuffer[4]));
        Wire.write(0x06);
        Wire.write(decToBcd(inputBuffer[5]));
        Wire.write(decToBcd(inputBuffer[6]));
        Wire.write(decToBcd(inputBuffer[7]));
        Wire.write(byte(0));
        Wire.endTransmission();

        // A make sure flag
        if(inputBuffer[8] == 0x23){
          // Say that time and date is synced now.
          char msg[6] = {'T', '-', 'D', ' ', ' ', ' '};
          char msg2[6] = {'S', 'Y', 'N', 'C', 'E', 'D'};
          displayWrite(3, 0x00, 750, msg);
          displayWrite(3, 0x00, 750, msg2);
        }

        // Answer with a beginning of a message. If it's all good, the PC controller will complete the message :p
        uint8_t transferBuffer[10] = {0x23, 0x10, 'T', 'i', 'm', 'e', ' ', 'S', 'y', 0x24};
        Serial.write(transferBuffer, 10);
      }

      // If message display is detected
      else if(cmdByte == 0x1F){
        // Get message delay time. It's the incoming value in seconds
        uint16_t msgDelay = 1000;
        if(inputBuffer[20] < 10) msgDelay *= (uint16_t)inputBuffer[20];
        
        char msg[6] = {' ', ' ', ' ', ' ', ' ', ' '};

        // Write first message
        uint8_t offset = 2;
        for(uint8_t i = offset; i < (offset + 6); i++) msg[i - offset] = (char)inputBuffer[i];
        displayWrite(3, 0x00, msgDelay, msg);

        // If more is available, do more!
        // Input buffer idx 21 is the long flag 0 (12 characters), idx 22 is the long flag 1 (18 characters)
        if(inputBuffer[21] == 1){
          offset += 6;
          for(uint8_t i = offset; i < (offset + 6); i++) msg[i - offset] = (char)inputBuffer[i];
          displayWrite(3, 0x00, msgDelay, msg);

          // If even more is available, do more!
          if(inputBuffer[22] == 1){
            offset += 6;
            for(uint8_t i = offset; i < (offset + 6); i++) msg[i - offset] = (char)inputBuffer[i];
            displayWrite(3, 0x00, msgDelay, msg);
          }
        }
      }

      // If LED preset mode is detected
      else if(cmdByte == 0x20){
        // Get input LED mode
        uint8_t cmdMode = inputBuffer[2];

        // If static color preset change is detected
        if(cmdMode == 0x01){
          led = 0;                      // Set LED mode to 0
          LED0P = inputBuffer[3];       // Set color to param 0 (inputBuffer[3])

          // Communicate 
          char LED0PMC[6];
          LED0PMC[0] = 'C';
          LED0PMC[1] = ' ';
          for(uint8_t i = 2; i < NUM_RGB; i++) LED0PMC[i] = LED0PM[inputBuffer[3]][i - 2];
          displayWrite(3, 0x00, 500, LED0PMC);
        }

        // If regular fade preset is detected
        else if(cmdMode == 0x02){
          led = 6;
          char k[6] = {'C', ' ', 'F', 'A', 'D', 'E'};
          displayWrite(3, 0x00, 1000, k);
        }

        // If cross fade is detected 
        else if(cmdMode == 0x03){
          LED7_delta = inputBuffer[3];  // Apply param 0 (inputBuffer[3]) to LED 7 delta value
          
          if(led == 7){                 // If it is already in CF mode, just display the message
            char k[6] = {'D', 'E', 'L', ' ', ' ', ' '};
            // Get the two digits of the delta
            k[4] = inputBuffer[3] / 10;
            k[5] = inputBuffer[3] % 10;
            displayWrite(3, 0x00, 1000, k);
          }
          else{                         // Otherwise
            led = 7;                    // Switch to cross fade and message
            char k[6] = {'C', ' ', 'C', 'R', 'F', 'D'};
            displayWrite(3, 0x00, 1000, k);
          }
        }

        // If chase fade is detected
        else if(cmdMode == 0x04){
          LED8_dp = inputBuffer[3];     // Apply param 0 (inputBuffer[3]) to LED 8 direction state
          // And do all the stuff as if it is a regular button triggered change
          if(inputBuffer[3] == 0) LED8_dr = false;
          else if(inputBuffer[3] == 1) LED8_dr = true;
          else if(inputBuffer[3] == 2) LED8_dr = !INTF0_dr;
          
          if(led == 8){                 // If it is already in CH mode, just display message
            char LED8PMC[6];
            for(uint8_t i = 0; i < 2; i++) LED8PMC[i] = ' ';
            for(uint8_t i = 2; i < NUM_RGB; i++) LED8PMC[i] = LED8PM[inputBuffer[3]][i - 2];
            displayWrite(3, 0x00, 1000, LED8PMC);
          }
          else{                         // Otherwise
            led = 8;                    // Switch to chase fade (LED 8)
            char k[6] = {'C', ' ', 'C', 'H', 'F', 'D'};
            displayWrite(3, 0x00, 1000, k);
          }
        }

        // If resistor color mode is detected
        else if(cmdMode == 0x05){
          led = 10;                     // To resistor mode (LED 10)
          char k[6] = {'C', 'R', 'C', 'O', 'D', 'E'};
          displayWrite(3, 0x00, 1000, k);
        }

        // If microphone mode is detected
        else if(cmdMode == 0x06){
          LED20_sMin = inputBuffer[3];  // Apply param 0 (inputBuffer[3]) to LED 20 threshold value
          
          if(led == 20){                // If it is already in mic mode, just display message
            char k[6] = {'S', 'E', 'N', ' ', ' ', ' '};
            k[4] = inputBuffer[3] / 10;
            k[5] = inputBuffer[3] % 10;
            displayWrite(3, 0x00, 1000, k);
          }
          else{                         // Otherwise
            led = 20;                   // Switch to microphone mode (LED 20)
            char k[6] = {'C', 'S', 'O', 'U', 'N', 'D'};
            displayWrite(3, 0x00, 1000, k);
          }
        }

        // If police lights mode is detected
        else if(cmdMode == 0x07){
          led = 11;                     // Switch to police light mode!
          char k[6] = {'C', ' ', ' ', 'C', 'O', 'P'};
          displayWrite(3, 0x00, 1000, k);
        }
      }

      // If FW version request
      else if(cmdByte == 0x22){
        uint8_t transferBuffer[10];
        for(uint8_t i = 0; i < 10; i++) transferBuffer[i] = 0;
        transferBuffer[0] = 0x23;     // Start byte
        transferBuffer[1] = 0x22;     // FW output byte
        for(uint8_t i = 2; i < 9; i++) transferBuffer[i] = (uint8_t)fwString[i - 2];
        transferBuffer[9] = 0x24;     // Stop byte
        Serial.write(transferBuffer, 10);
      }

      // Configuration save request
      else if(cmdByte == 0x33){
        // Call save config procedure
        saveConfig();
      }

      // Configuration reset request
      else if(cmdByte == 0x34){
        // Call save config procedure
        firstConfig();
      }

      // Some random return otherwise
      else{
        char k[6] = {' ', ' ', ' ', ' ', ' ', ' '};
        for(uint8_t i = 1; i < 7; i++) k[i - 1] = (char)inputBuffer[i];
        displayWrite(3, 0x00, 1000, k);
        for(uint8_t i = 0; i < 6; i++) Serial.print(k[i]);
      }
    }

    free(inputBuffer);

    // Discard the rest
    uint8_t flushBuffer[Serial.available()];
    Serial.readBytes(flushBuffer, Serial.available());
    Serial.flush();
  }
}

// Reset config, load initial values
void firstConfig(){
  interface = 0;             // Interface default: 0
  led = 0;                   // LED default: static (0)
  INTF0_DM = 0;              // Dot mode default: Blink
  isFahrenheit = 0;          // Celsius
  LED0P = 0;                 // Default: off
  LED7_delta = 42;           // Default xFade delta
  LED8_dp = 0;               // Default: right to left
  LED11_pt = 0;              // Default: standard cop
  LED20_sMin = 10;           // Default: 10

  char k[6] = {'D', 'E', 'F', 'A', 'U', 'L'};
  char k2[6] = {'S', 'E', 'T', 'I', 'N', 'G'};
  char k3[6] = {'R', 'E', 'T', 'O', 'R', 'D'};
  displayWrite(3, 0x00, 750, k);
  displayWrite(3, 0x00, 750, k2);
  displayWrite(3, 0x00, 750, k3);
}

// Global variables load procedure
void loadConfig(){
  // Address "pointer"
  
  int addr = 0;
  // Global savings
  // Interface read
  interface = EEPROM.read(addr);
  addr++;
  // LED save
  led = EEPROM.read(addr);
  addr++;
  
  // Call to save all settings
  // Interface 0: Read dot mode
  INTF0_DM = EEPROM.read(addr);
  addr++;

  // Interface 1: Nothin to read
  // Interface 2: Read fahrenheit flag
  isFahrenheit = EEPROM.read(addr);
  addr++;

  // Interface end

  // LED 0 static presets: Read color configuration
  LED0P = EEPROM.read(addr);
  addr++;

  // LED 2 serial command colors: Read array configuration if serial LED mode is enabled
  if(led == 2){
    for(uint8_t i = 0; i < NUM_BYTES; i++) rgb_arr[i] = EEPROM.read(addr + i);
    render();
  }
  addr += NUM_BYTES;

  // LED 3 smooth write colors: Read array configuration if monitor mode is enabled
  if(led == 3){
    for(uint8_t i = 0; i < NUM_BYTES; i++) target_arr[i] = EEPROM.read(addr + i);
    ledDirectWrite(target_arr);
  }
  addr += NUM_BYTES;

  // LED 6 spectrum fade: Nothing to read
  // LED 7 cross spectrum fade: Read delta
  LED7_delta = EEPROM.read(addr);
  if(LED7_delta == 0) LED7_delta = 42;
  addr++;

  // LED 8 chase fade: Read chase fade direction
  LED8_dp = EEPROM.read(addr);
  addr++;

  // LED 10 resistor: Nothing to read
  // LED 11 cop mode: Read pattern
  LED11_pt = EEPROM.read(addr);
  addr++;
  
  // LED 20 dancing mode: Read threshold
  LED20_sMin = EEPROM.read(addr);
  if(LED20_sMin == 0) LED20_sMin = 10;
}

// Global variables save procedure
void saveConfig(){
  // Address "pointer"
  
  int addr = 0;
  // Global savings
  // Interface save
  EEPROM.write(addr, interface);
  addr++;
  // LED save
  EEPROM.write(addr, led);
  addr++;
  
  // Call to save all settings
  // Interface 0: Save dot mode
  EEPROM.write(addr, INTF0_DM);
  addr++;

  // Interface 1: Nothin to save
  // Interface 2: Save fahrenheit flag
  EEPROM.write(addr, isFahrenheit);
  addr++;

  // Interface end

  // LED 0 static presets: Save color configuration
  EEPROM.write(addr, LED0P);
  addr++;

  // LED 2 serial command colors: Save array configuration if serial LED mode is enabled
  if(led == 2) for(uint8_t i = 0; i < NUM_BYTES; i++) EEPROM.write(addr + i, rgb_arr[i]);
  addr += NUM_BYTES;

  // LED 3 serial command colors: Save array configuration if serial LED smooth mode is enabled
  if(led == 3) for(uint8_t i = 0; i < NUM_BYTES; i++) EEPROM.write(addr + i, target_arr[i]);
  addr += NUM_BYTES;

  // LED 6 spectrum fade: Nothing to save
  // LED 7 cross spectrum fade: Save delta
  EEPROM.write(addr, LED7_delta);
  addr++;

  // LED 8 chase fade: Save chase fade direction
  EEPROM.write(addr, LED8_dp);
  addr++;

  // LED 10 resistor: Nothing to save
  EEPROM.write(addr, LED11_pt);
  addr++;
  
  // LED 20 dancing mode: Save threshold
  EEPROM.write(addr, LED20_sMin);

  char k[6] = {'A', 'L', 'L', ' ', ' ', ' '};
  char k2[6] = {'S', 'E', 'T', 'I', 'N', 'G'};
  char k3[6] = {'S', 'A', 'V', 'E', 'D', ' '};
  displayWrite(3, 0x00, 750, k);
  displayWrite(3, 0x00, 750, k2);
  displayWrite(3, 0x00, 750, k3);
}

// This function reads the microphone input and returns a value between 0 and 255
// Threshold sets the minimum value the mic is sensitive to. Must not be larger than 49 (not checked in the function, results division by zero otherwise)
uint8_t getMicData(uint16_t threshold){
  uint32_t dMicRead;
  
  // Obtain amplitude
  uint16_t dMicMax = 0;
  uint16_t dMicMin = 1023;
  for(uint8_t i = 0; i < 196; i++){
    dMicRead = analogRead(MIC_PIN);
    // Get minimum and maximum
    if(dMicRead > dMicMax) dMicMax = dMicRead;
    else if(dMicRead < dMicMin) dMicMin = dMicRead;
  }

  // Amplitude calculation
  uint32_t dMicA = dMicMax - dMicMin;
  // Range clipping 
  if(dMicA > 50) dMicA = 50;
  double micA = (double)dMicA;

  // Do a logarithmic input scale
  uint8_t u = (uint8_t)(round((255.0 * log10(micA - (double)threshold + 1.0)) / log10(51.0 - (double)threshold)));
  return u;
}

// Fill LED array left half with one and the right half with other color
void copHalfRender(uint8_t right, uint8_t left){
  for(uint8_t i = 0; i < (NUM_BYTES >> 1); i+= 3) for(uint8_t j = 0; j < 3; j++) rgb_arr[i + j] = LED11_colors[right][j];
  for(uint8_t i = (NUM_BYTES >> 1); i < NUM_BYTES; i+= 3) for(uint8_t j = 0; j < 3; j++) rgb_arr[i + j] = LED11_colors[left][j];
  render();
}

// Perfect sine waves with 85 deg. phase shift
// Visualize it here! https://www.desmos.com/calculator/xpaf8pequz
uint32_t ledPhase(uint8_t phase){
  uint32_t val = 0;
  // This is the only mathematically sophisticated value we need to know.
  float cosRes = 127.5 * cos(PI85 * (float)phase);
  // For different intervals, OR the result with the function value.
  if(phase < 85) val |= ((((uint32_t)(127.5 - cosRes)) << 16) | (((uint32_t)(127.5 + cosRes)) << 8));
  else if(phase < 170) val |= ((((uint32_t)(127.5 - cosRes)) << 16) | ((uint32_t)(127.5 + cosRes)));
  else val |= ((((uint32_t)(127.5 - cosRes)) << 8) | ((uint32_t)(127.5 + cosRes)));
  return val;
}

// Smooth transistion LED render
void ledSmoothWrite(){
  // Obtain equality
  for(uint8_t i = 0; i < NUM_BYTES; i++){
    if(rgb_arr[i] < target_arr[i]) rgb_arr[i]++;
    else if(rgb_arr[i] > target_arr[i]) rgb_arr[i]--;
  }
  render();
}

// Direct LED render
void ledDirectWrite(uint8_t ledTarget[]){
  memcpy(rgb_arr, ledTarget, NUM_BYTES);
  render();
}

// Check button for activity. If active, set return SHORTPRESS or LONGPRESS
uint8_t checkOption(int buttonPin){
  // Button check function
  int num = getNum(buttonPin);
  uint8_t rV = 0;                // State return variable
  if(digitalRead(buttonPin) == HIGH) {
    if(p[num] == false){     // If button not pressed before
      p[num] = true;          // Set pressed flag
      p_t[num] = millis();    // Set timer as millis
    }

    if ((millis() - p_t[num] > lp_t) && (lp[num] == false)) {
      lp[num] = true;         // Long press detected
      rV = LONGPRESS;                 // Set alternative number
    }
  }else{                      // If digitalRead returns false
    if(p[num] == true){     // If pressed flag set
      if(lp[num] == true){  // If long press flag set
        lp[num] = false;      // Reset long press flag
      }else{
        rV = SHORTPRESS;
      }
      p[num] = false;
    }
  }
  return rV;
}

// Clear check routine variables when entering a new interface.
// Always use this function to safely switch interfaces
void switchInterface(uint8_t input){
  clearInterface();
  interface = input;
}

// Safely clear button states on transition
void clearInterface(){
  cTEN = 0;
  cCHY = 0;
  cVMM = 0;
  cMSD = 0;
}

int getNum(int num){
  if(num == B_TEN_PIN) return 0;
  if(num == B_CHY_PIN) return 1;
  if(num == B_VMM_PIN) return 2;
  if(num == B_MSD_PIN) return 3;
  return -1;
}

// Wire, RTC Initializer, RTC Active Status Checker
void wrInit(){
  Wire.begin();
  rtc.begin();
  
  Wire.beginTransmission(0x68);
  Wire.write(0x07);
  Wire.write(0x10);
  
  Wire.endTransmission();
  
  if(! rtc.isrunning()) rtc.adjust(DateTime(__DATE__, __TIME__));
}

// Fancy welcome message slide in function. Wasted waaay to much time on this :p
void welcome(char* message){
  uint8_t spaces = 0;                                             // Empty spaces
  for(int i = 0; i < 6; i++) if(message[i] == ' ') spaces++;      // Count all spaces
  
  int delayMatrix[][6] = {{30, 15, 15, 15, 15, 300},
                         {30, 15, 15, 15, 300, 0},
                         {30, 15, 15, 300, 0, 0},
                         {30, 15, 300, 0, 0, 0},
                         {30, 300, 0, 0, 0, 0},
                         {300, 0, 0, 0, 0, 0}};
  
  for(int k = 0; k < (6 - spaces); k++){                          // k-th letter of message
    for(int i = 0; i < (6 - k); i++){                             // Let the letter slide in from the right to the next available position
      char dPattern[6];                                           // Define empty pattern
      for(int j = 0; j < 6; j++){
        if(j >= k) dPattern[j] = ' ';                             // All j's larger than current k will be filled with empty spaces
        else dPattern[j] = message[j];                            // If k has increased, fill letters already slided in in advance
      }
      dPattern[5 - i] = message[k];                               // Manipulate i-th filled empty pattern element with k-th letter of message
      displayWrite(3, 0x00, delayMatrix[k][i], dPattern);         // Render the message with delay information
    }
  }
  
  char empty[] = {' ', ' ', ' ', ' ', ' ', ' '};
  displayWrite(3, 0x00, 400, empty);
  displayWrite(3, 0x00, 1000, message);
}

// Temperature mean scaling. Takes the global added up sensor read value, takes the mean, returns either °C or °F in a displayable value
uint32_t t_avg(){
  tsmCounter = 0;
  float nts = (float)tsmValues * 0.12890625;                     // Mean value with 5V digital input scaling
  tsmValues = 0;
  float kts = (float)ts;
  if(abs(kts - nts) > 20) kts = nts;                              // Low Pass Threshold if(abs(ts - nts) > 0)
  if(isFahrenheit) kts = (1.8 * kts) + 3200.0;                    // Fahrenheit conversion
  return (uint32_t)kts;
}

// Render message to the tubes. See inside the function for a detailed how to use
void displayWrite(uint8_t renderOption, uint8_t ODDR, int delayOption, char* message){
  // uint8_t renderOption      // 0: Time, 1: Date, 2: Temperature, 3: Message
  
  // uint8_t ODDR = 0;         // Output Dot Overlay Register:
                               // [ reserved | reserved | dot5. | dot4. | dot3. | dot2. | dot1. | dot0. ]
                               // 7                                                                     0
                               
  // int delayOption           // Message delay using delay function (freezing everything else) in ms.
                               
  uint8_t codedOutput[6];         // Output Coded Pointer: {Sec, SecD, Min, MinD, Hr, HrD}
  
  if(renderOption == 0){
    // If getDisplayData is requested to retrieve time information
    DateTime now = rtc.now();
    codedOutput[0] = charConvert((now.second() % 10));
    codedOutput[1] = charConvert((now.second() / 10));
    codedOutput[2] = charConvert((now.minute() % 10));
    codedOutput[3] = charConvert((now.minute() / 10));
    codedOutput[4] = charConvert((now.hour() % 10));
    codedOutput[5] = charConvert((now.hour() / 10));
  }
  else if(renderOption == 1){
    // If getDisplayData is requested to retrieve date information
    DateTime now = rtc.now();
    codedOutput[0] = charConvert((now.year() % 10));
    codedOutput[1] = charConvert((now.year() % 100) / 10);
    codedOutput[2] = charConvert((now.month() % 10));
    codedOutput[3] = charConvert((now.month() / 10));
    codedOutput[4] = charConvert((now.day() % 10));
    codedOutput[5] = charConvert((now.day() / 10)); 
  }
  else if(renderOption == 2){
    // Output ts (Temperature sensor final value)
    codedOutput[0] = charConvert('C');
    codedOutput[1] = charConvert('.');
    codedOutput[2] = charConvert((char)((ts % 10)));
    codedOutput[3] = charConvert((char)((ts % 100) / 10));
    codedOutput[4] = charConvert((char)(((ts % 1000) / 100)));
    codedOutput[5] = charConvert((char)(ts / 1000));
  }
  else if(renderOption == 3){
    for(int i = 0; i < 6; i++) codedOutput[i] = charConvert(message[5 - i]);
  }
  else if(renderOption == 4){
    // Farenheit render
    codedOutput[0] = charConvert('F');
    codedOutput[1] = charConvert('.');
    codedOutput[2] = charConvert((char)((ts % 10)));
    codedOutput[3] = charConvert((char)((ts % 100) / 10));
    codedOutput[4] = charConvert((char)(((ts % 1000) / 100)));
    codedOutput[5] = charConvert((char)(ts / 1000));
  }
  
  // Check if ODDR bit is set for the i-th position of currentOutputCoded.
  // If yes, OR the dot position bit with 1
  for(int i = 0; i < 6; i++) if(ODDR & (1 << i)) codedOutput[i] |= (1 << 0);
  
  // Undelayed VFD Output Render
  digitalWriteFast(LATCH_PIN, LOW);
  for(int i = 0; i < 6; i++) shiftOut(DATA_PIN, CLOCK_PIN, LSBFIRST, codedOutput[i]);
  digitalWriteFast(LATCH_PIN, HIGH);
  
  // Optional Display Delay Parameter
  if(delayOption != 0) delay(delayOption);
}

// Takes a regular char input and returns the corresponding 7 segment uint8_t. Byte mapping: 0b |a|b|c|d|e|f|g|.|
uint8_t charConvert(char input){
  // Takes char value (0 to 255) and converts to VFD clock display pattern
  uint8_t output = 0;
  
  // I/O Logic
  switch(input){
    
    // Decimal numbers
    case 0:
      output = 0b11111100;
      break;
    case 1:
      output = 0b01100000;
      break;
    case 2:
      output = 0b11011010;
      break;
    case 3:
      output = 0b11110010;
      break;
    case 4:
      output = 0b01100110;
      break;
    case 5:
      output = 0b10110110;
      break;
    case 6:
      output = 0b10111110;
      break;
    case 7:
      output = 0b11100000;
      break;
    case 8:
      output = 0b11111110;
      break;
    case 9:
      output = 0b11110110;
      break;
      
    // Letters
    case 'A':
      output = 0b11101110;
      break;
    case 'B':
      output = 0b00111110;
      break;
    case 'C':
      output = 0b10011100;
      break;
    case 'D':
      output = 0b01111010;
      break;
    case 'E':
      output = 0b10011110;
      break;
    case 'F':
      output = 0b10001110;
      break;
    case 'G':
      output = 0b11110110;
      break;
    case 'H':
      output = 0b01101110;
      break;
    case 'I':
      output = 0b00001100;
      break;
    case 'J':
      output = 0b01110000;
      break;
    case 'L':
      output = 0b00011100;
      break;
    case 'N':
      output = 0b00101010;
      break;
    case 'O':
      output = 0b11111100;
      break;
    case 'P':
      output = 0b11001110;
      break;
    case 'Q':
      output = 0b11100110;
      break;
    case 'R':
      output = 0b00001010;
      break;
    case 'S':
      output = 0b10110110;
      break;
    case 'T':
      output = 0b00011110;
      break;
    case 'U':
      output = 0b00111000;
      break;
    case 'V':
      output = 0b01111100;
      break;
    case 'Y':
      output = 0b01110110;
      break;
    
    // Special characters
    case ' ': // Empty Output
      output = 0b00000000;
      break;
    case '.': // Temperature Dot
      output = 0b11000110;
      break;
    case '-':
      output = 0b00000010;
      break;
    case '0':
      output = 0b11111100;
      break;
  }
  return output;
}

uint8_t decToBcd(uint8_t input) {
  return ((input / 10 * 16) + (input % 10));
}

// This section is written by:
// Acrobotic - 01/10/2013
// Author: x1sc0 

/*License:
  Beerware License; if you find the code useful, and we happen to cross 
  paths, you're encouraged to buy us a beer. The code is distributed hoping
  that you in fact find it useful, but  without warranty of any kind.*/

void render(void){
  if(!rgb_arr) return;

  while((micros() - t_f) < 50L);  // wait for 50us (data latch)

  cli(); // Disable interrupts so that timing is as precise as possible
  volatile uint8_t  
   *p    = rgb_arr,   // Copy the start address of our data array
    val  = *p++,      // Get the current byte value & point to next byte
    high = PORT |  _BV(PORT_PIN), // Bitmask for sending HIGH to pin
    low  = PORT & ~_BV(PORT_PIN), // Bitmask for sending LOW to pin
    tmp  = low,       // Swap variable to adjust duty cycle 
    nbits= NUM_BITS;  // Bit counter for inner loop
  volatile uint16_t
    nbytes = NUM_BYTES; // Byte counter for outer loop
  asm volatile(
    // Instruction        CLK     Description                 Phase
   "nextbit:\n\t"         // -    label                       (T =  0) 
    "sbi  %0, %1\n\t"     // 2    signal HIGH                 (T =  2) 
    "sbrc %4, 7\n\t"      // 1-2  if MSB set                  (T =  ?)          
     "mov  %6, %3\n\t"    // 0-1   tmp'll set signal high     (T =  4) 
    "dec  %5\n\t"         // 1    decrease bitcount           (T =  5) 
    "nop\n\t"             // 1    nop (idle 1 clock cycle)    (T =  6)
    "st   %a2, %6\n\t"    // 2    set PORT to tmp             (T =  8)
    "mov  %6, %7\n\t"     // 1    reset tmp to low (default)  (T =  9)
    "breq nextbyte\n\t"   // 1-2  if bitcount ==0 -> nextbyte (T =  ?)                
    "rol  %4\n\t"         // 1    shift MSB leftwards         (T = 11)
    "rjmp .+0\n\t"        // 2    nop nop                     (T = 13)
    "cbi   %0, %1\n\t"    // 2    signal LOW                  (T = 15)
    "rjmp .+0\n\t"        // 2    nop nop                     (T = 17)
    "nop\n\t"             // 1    nop                         (T = 18)
    "rjmp nextbit\n\t"    // 2    bitcount !=0 -> nextbit     (T = 20)
   "nextbyte:\n\t"        // -    label                       -
    "ldi  %5, 8\n\t"      // 1    reset bitcount              (T = 11)
    "ld   %4, %a8+\n\t"   // 2    val = *p++                  (T = 13)
    "cbi   %0, %1\n\t"    // 2    signal LOW                  (T = 15)
    "rjmp .+0\n\t"        // 2    nop nop                     (T = 17)
    "nop\n\t"             // 1    nop                         (T = 18)
    "dec %9\n\t"          // 1    decrease bytecount          (T = 19)
    "brne nextbit\n\t"    // 2    if bytecount !=0 -> nextbit (T = 20)
    ::
    // Input operands         Operand Id (w/ constraint)
    "I" (_SFR_IO_ADDR(PORT)), // %0
    "I" (PORT_PIN),           // %1
    "e" (&PORT),              // %a2
    "r" (high),               // %3
    "r" (val),                // %4
    "r" (nbits),              // %5
    "r" (tmp),                // %6
    "r" (low),                // %7
    "e" (p),                  // %a8
    "w" (nbytes)              // %9
  );
  sei();                          // Enable interrupts
  t_f = micros();                 // t_f will be used to measure the 50us 
                                  // latching period in the next call of the 
                                  // function.
}
 

Frank from The VFD Collective

Hi there, it's Frank from THE VFD COLLECTIVE.

I'm a 20 year old electrical engineer student currently living in Berlin, Germany. This page, THE VFD COLLECTIVE was brought into life to promote my VFD tube digital clock (Project OpenVFD) and let everyone who enjoy doing creative nerd stuff with VFD displays and tubes to share their work.

In my free time, I'm in love with traveling, photography, hiking in the mountains, vegan food and great coffee. At home, you'll either find me learning for college or making music. Playing the piano, guitar and singing is so much fun.

Peace :)